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Abstract

Beamlike solutions for fully anisotropic elastic tubes of arbitrary closed cross section are derived following the exact

beam theory introduced recently by Ladev�eze and Simmonds [Comptes Rendus Acad. Sci. Paris 322 (1996) 455; Eur.

J. Mech., A/Solids 17 (1998) 377]. Instead of using finite elements to compute the various operators that appear, here

the linear shell theory of Koiter [A consistent first approximation in the general theory of thin elastic shells, The Theory

of Thin Elastic Shells, Proc. IUTAM Sympos. Delft, Koiter, W.T. (Ed.), North-Holland, Amsterdam, 1959, p. 12] and

Sanders [An improved first-approximation theory for thin shells, (1959) NASA Rept. No. 24] is used to exploit the

relative thinness of the tube. Analytical, beamlike solutions (the analogues of Saint–Venant solutions in three-

dimensional elasticity) are obtained which contain relative errors of O(h=R), where h is the shell thickness and R is some

cross sectional radius. These errors are of the same order of magnitude as those contained unavoidably in the stress–

strain relations of any first-approximation shell theory. In addition, beamlike stress–strain relations are obtained which

express an overall bending strain vector and an overall extensional-shear strain vector in terms of the net traction and

moment at any section. Numerical results are presented for tubes with elliptic cross sections. This work generalizes the

analysis of Reissner and Tsai [J. Appl. Mech. 39 (1972) 148] by considering external surface loads and by allowing for

overall transverse shearing forces in addition to a net axial force and complements the asymptotic analysis of Berdi-

chevsky et al. [Comp. Eng. 2 (1992) 411] by allowing the tube to be of any length.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Ladev�eze and Simmonds (1996, 1998) have shown for a piecewise uniform prismatic body of arbitrary
cross section under arbitrary loading that it is possible to construct, from the three-dimensional theory of

elasticity, an exact beam theory. That is, they present one-dimensional beamlike equations that involve no

approximations whatsoever (beyond those already embodied in three-dimensional elasticity). In particular,
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there is no assumption that the beam is relatively thin (high aspect ratio) nor are there asymptotic

expansions of any kind.

In this exact theory of beams, the three-dimensional solution is decomposed into the sum of a Saint–

Venant (SV) part and a residual or decaying (D) part. The SV-part, which is determined first and is, itself,
three-dimensional, constitutes not only the sole contribution to the exact one-dimensional beam theory, but

also yields a criterion (an orthogonality condition) which determines the D-loads and D-end displacements.

These latter (residual) data produce exponentially decaying three-dimensional solutions which contribute

nothing to the exact beam theory.

As for the D-part, it is well known in continuum mechanics that when thin layers exist, the governing

equations, in the limit as the thickness of the layer approaches zero, may change character completely (e.g.,

the elliptic equations of elasticity become hyperbolic in the limit of a saddle-shaped membrane). No mere

mathematical curiosity, such limiting behavior can wreak havoc with all-purpose numerical codes designed
for bodies of ‘‘reasonable’’ shape. For example, in a solid, elastically isotropic beam of circular cross

section, D-solutions in the neighborhoods of ends and/or load and section discontinuities decay over a

distance of the order of the radius of the cross section. However, for a relatively thin tube, the D-solutions

display three decay lengths: one of OðhÞ, the tube thickness (the ‘‘three-dimensional’’ edge effect); another of

O(
ffiffiffiffiffiffi
hR

p
), the geometrical mean of the thickness times a characteristic length of the cross section (the

‘‘bending’’ edge effect of classical, first-approximation shell theory); and a third of O(R
ffiffiffiffiffiffiffiffi
R=h

p
), the very long

‘‘semi-membrane’’ edge effect. [In elastically orthotropic tubes, the situation is even more complicated––see

Sayir (1985) and Simmonds (1992).]
The work of Koiter (1970), Danielson (1970), and Ladev�eze (1976, 1980) has shown that, outside a three-

dimensional edge zone of width O(h), the linear theory of Sanders (1959) and Koiter (1959) for elastically

isotropic or anisotropic shells contains relative mean square errors of Oðh=Rþ h2=L2Þ compared to exact

three-dimensional solutions, where L is the ‘‘characteristic wavelength’’ of the deformation pattern.

Now imagine a right cylindrical shell of closed but otherwise arbitrary cross section (i.e., a tube) on

whose ends certain loads and/or displacements are prescribed. If the end loads (known or not) have a non-

zero resultant force or moment, the tube should behave in some overall way like a beam, and, if the tube is

thin, this beamlike behavior might be expected to be described to a good approximation by membrane

theory, provided (near) inextensional deformation is suppressed. Within the framework of the Sanders–

Koiter shell theory, we might say, roughly, that as h ! 0, membrane theory (the solutions of which yield

overall beamlike stress–strain relations) corresponds to the SV-solutions of Ladev�eze and Simmonds (1996,

1998) for elastic prisms, and that the more complicated supplementary decaying bending solutions of the

Sanders–Koiter theory correspond to the D-solutions discussed above.

Following the approach in the exact theory of beams, our ultimate goal is take advantage of the relative

thinness of the tube to use the Sanders–Koiter theory. Complete analytic solutions can then be derived, as

we show. The present paper is devoted to the first step in this program, namely, to develop beamlike (Saint–
Venant) solutions for a fully anisotropic tube (21 elastic–geometric constants) of arbitrary (closed) cross

section. In particular, we present overall stress–strain relations for a tube subject to surface loads constant

along its length. Also, we present numerical results for tubes of elliptic cross section.

Of the many studies of thin-walled beams found in the literature, that of Berdichevsky et al. (1992) seems

the most relevant. These authors present a commendable review of prior work, including the important

paper by Reissner and Tsai (1972), and compare various theories with experiments. As we do, Berdichevsky

et al. start with the linear, first-approximation shell theory of Sanders and Koiter applied to an anisotropic

tube under surface and end loads. (Initially, they even allow the elastic moduli to vary in the circumferential
direction.) Moreover, the early stage of their analysis leads to the same differential equation (29) that we

encounter. However, from the outset, Berdichevsky et al. assume that axial variations of the various un-

knowns are small compared to their circumferential variations and this becomes the basis of their

asymptotic analysis in which successive approximations are derived from corresponding forms of the
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energy functional. In contrast, we make no approximations beyond those inherent in the Sanders–Koiter

theory. Thus, in particular, our analysis applies to tubes of any length whereas that of Berdichevsky et al. is

perforce limited to beams with a high length-to-diameter ratio. Further, as far as practical, we display

explicitly the effects of local wall bending stiffness that, although usually small, are accurately predicted by
Sanders–Koiter theory. At the same time we note that, although it is possible to find ‘‘exact’’ beamlike

solutions of the Sanders–Koiter shell equations, this would lead to totally unnecessary algebraic compli-

cations because the constitutive equations of any first-approximation shell theory, as shown by Koiter

(1959), contain relative errors of order e ¼ h=R. We shall exploit this uncertainty to simplify our equations

whenever possible.
2. Geometry

In a fixed Euclidean reference frame, let (r; h; x) denote a set of circular cylindrical coordinates with

associated dextral orthonormal base vectors, ferðhÞ; ehðhÞ; kg. We take
T : x ¼ R½xkþ rðyÞ�; r 2 S; 06 x6 l; 06 y6 2p; ð1Þ
as the vector representation of the reference surface of the tube. Here,S is the (suitably scaled) centerline of

the cross section of the tube, x and y are, respectively, dimensionless distances along and around T, and

2pR is the distance around the tube. The dimensionless position of a point on S may be written as
r ¼ rðyÞerðhÞ; ð2Þ
where
h ¼ �
Z y

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r�2ðgÞdg

p
rðgÞ ; ð3Þ
the ± sign allowing for the possibility that S might not be star-shaped with respect to the chosen axis of T.

(IfT is a circular cylinder of radius R, r ¼ 1 and y ¼ h.) Finally, we shall denote differentiation with respect

to x and y by a prime (0) and a dot (�), respectively.

When convenient, we shall use Cartesian tensor notation, with x ¼ x1 and y ¼ x2. In particular, if R2aab
and Rbab denote, respectively, the covariant components of the metric and curvature tensors of T, then,

from (1) and (2),
aab ¼ dab; bab ¼ jðyÞda2db2; a; b ¼ 1; 2; ð4Þ
where dab is the Kronecker delta and
j ¼ ðr� � r��Þ � k ¼ � 1� ð1=2Þ½r2ðyÞ���

rðyÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r�2ðyÞ

p ð5Þ
is the dimensionless curvature of S.
3. The governing equations

Let rhNab, rh2Mab, ðr=EÞEab, ðr=hEÞKab, and ðrh=RÞðpa; pÞ denote, respectively, the (modified, sym-

metric) stress resultants, stress couples, extensional strains, bending strains, and surface loads of the
Sanders–Koiter theory, where r is some measure of the stress level in the tube and E is some nominal

Young�s modulus. In component form, with the notation
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Tab ¼ fTx; T ; Tyg ð6Þ

and with ðrh=RÞfpx; py ;�pg denoting the components of the external surface load (assumed known), the

equilibrium and compatibility conditions of the Sanders–Koiter theory take the form
N 0
x þ ½N � ð1=2ÞejM �� þ px ¼ 0 ð7Þ

N 0 þ N �
y þ ej½ð3=2ÞM 0 þM�

y � þ py ¼ 0 ð8Þ

�eðM 00
x þ 2M 0� þM��

y Þ þ jNy ¼ p ð9Þ

K 0
y � ½K þ ð1=2ÞejE�� ¼ 0 ð7�Þ

�K 0 þ K�
x þ ej½ð3=2ÞE0 � E�

x � ¼ 0 ð8�Þ

eðE00
y � 2E0� þ E��

x Þ þ jKx ¼ 0: ð9�Þ
These equations display the static-geometric duality of Goldenveiser (1940) and Lure (1940). That is, if we

introduce the ‘‘hat’’ notation,
bTab ¼ eakeblTkl ¼ fTy ;�T ; Txg; ð10Þ

where eab is the two-dimensional alternator, then, on setting px ¼ py ¼ p ¼ 0, the equilibrium equations (7)–

(9) go over into the compatibility conditions (7*)–(9*) if the variables below on the left are replaced by

those on the right:
bNab : Kab; Mab : �bEab: ð11Þ
To complete the set of field equations, we must add constitutive relations. To exploit fully the economy

offered by the static-geometric duality, we follow McDevitt and Simmonds (1999) and write these in the

form
�bEab ¼ w;bNab
¼ �Aabkl

bNkl þ CabklKkl ð12Þ

Mab ¼ w;Kab
¼ A�

abklKkl þ C�
abkl

bNkl; ð12�Þ
where A�
abkl is the dual of �Aabkl, C�

abkl � Cklab is the dual of Cabkl, and
w ¼ ð1=2ÞðA�
abklKabKkl þ Cabkl

bNabKkl þ C�
abklKab

bNkl � Aabkl
bNab

bNklÞ ð13Þ
is the dimensionless mixed-energy density. In (13), no type of elastic symmetry is assumed (as is sometimes

imposed for simplicity on a solid anisotropic cylinder). Rather, one should regard (13) as the mixed-energy

density of a thin, totally anisotropic sheet bent to form a tube of arbitrary cross section.
4. The tube as a beam

Let
p ¼ pxkþ pyt� pn ¼ pðx; yÞ ð14Þ

and
Nx ¼ Nxkþ ½N þ ð3=2ÞejM �t� eðM 0
x þ 2M�Þn ¼ Nxkþ Gt� e½M 0

xnþ 2ðMnÞ�� ¼ Nxðx; y; eÞ; ð15Þ
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where
G ¼ N � ð1=2ÞejM : ð16Þ

In (14) and (15)
t ¼ r�ðyÞ and n ¼ k� tðyÞ ð17Þ

are, respectively, a unit tangent and a unit inward normal to S. By computing from the local equilibrium

equations (7)–(9), at a dimensionless distance x from the left end of the tube, the net traction rhRT and the

net moment rhR2M about the center (r ¼ 0) of S, we obtain the following beamlike equilibrium equations:
T0 þ P ¼ 0 ð18Þ

and
M0 þ k� Tþ L ¼ 0; ð19Þ

where
T ¼
Z 2p

0

Nxðx; y; eÞdy ð20Þ

P ¼
Z 2p

0

pðx; yÞdy ð21Þ

M ¼
Z 2p

0

½rðyÞ �Nxðx; y; eÞ � eMxðx; y; eÞtðyÞ�dy ð22Þ

L ¼
Z 2p

0

rðyÞ � pðx; yÞdy: ð23Þ
We note that (18)–(23) are exact consequences of the linear equations of equilibrium of three-dimen-

sional continuum mechanics (Budiansky and Sanders, 1963). We also note that the definitions of T and M

are independent of any material properties.

Given Tð0Þ and Mð0Þ and the surface load pðx; yÞ, the solution of the beam equations is immediate:
T ¼ Tð0Þ �
Z x

0

PðnÞdðnÞ ð24Þ

M ¼ Mð0Þ � xk� TðxÞ �
Z x

0

½nk� PðnÞ þ LðnÞ�dn ð25Þ
We will return to the beam equations once we have identified those particular solutions of our field

equations (7)–(9�), (12) and (12�) that are beamlike.

We note that the static-geometric duality (11) implies immediately that the beam equations (18) and (19)

have the kinematic duals
A0 ¼ 0 ð18�Þ

B0 þ k� A ¼ 0 ð19�Þ

where, in analogy with (20) and (22),
A ¼
Z 2p

0

Kyðx; y; eÞdy ð20�Þ



1930 P. Ladev�eze et al. / International Journal of Solids and Structures 41 (2004) 1925–1944
B ¼
Z 2p

0

½rðyÞ � Kyðx; y; eÞ þ eEyðx; y; eÞtðyÞ�dy: ð22�Þ
Here, by analogy with (15),
Ky ¼ Kyk� ½K � ð3=2ÞejE�tþ eðE0
y � 2E�Þn ¼ Kyk� H tþ e½E0

yn� 2ðEnÞ�� � Kyðx; y; eÞ ð15�Þ
where, in analogy with (16),
H ¼ K þ ð1=2ÞejE: ð16�Þ

Let ðR2=hÞðr=EÞðUþ euÞ denote the shell displacement, where
Uþ eu ¼ UðyÞkþ ½V ðyÞ � xU �ðyÞ�tðyÞ þ qðyÞ½V ðyÞ � xU �ðyÞ��nðyÞ
þ e½uðx; y; eÞkþ vðx; y; eÞtðyÞ � wðx; y; eÞnðyÞ�: ð26Þ
Here, U and u represent, respectively, an inextensional and a residual displacement, and q ¼ j�1. If we

introduce the (dimensionless) strain–displacement relations of the Sanders–Koiter theory, namely,
Ex ¼ u0; E ¼ ð1=2Þðu� þ v0Þ; Ey ¼ v� þ jw ð27Þ

and
Kx ¼ �ew00; K ¼ �MðU �Þ � e½w0� � ð3=4Þjv0 þ ð1=4Þju��
Ky ¼ ½MðV � xU �Þ�� � eðw� � jvÞ�; ð28Þ
where
M ¼ d

dy
qðyÞ d

dy

� �
þ jðyÞ; ð29Þ
then from (15�), (28) and (29),
Ky ¼ f½MðV � xU �Þ � eðw� � jvÞ�kþ ðqU �� þ ew0Þt� ðU � þ eu�Þng�: ð30Þ

On using (28)3 and (30) in (20�) and (22�), we see that A and B represent gross dislocations of the closed

cross section S that vanish if S is neither cut, nor cut and then welded to produce a dislocation, as we now

assume. That is, we assume Uþ eu to be 2p-periodic in y.
5. Beamlike solutions

We now assume that the (dimensionless) external loads are independent of the axial coordinate x, which
we indicate by writing
p ¼ p
0

xðyÞkþ p
0

yðyÞtðyÞ � p
0ðyÞnðyÞ ¼ p

0

xðyÞkþ q
0ðyÞtðyÞ � ½qðyÞp0ðyÞtðyÞ��; ð31Þ
where
q
0 ¼ ½qðyÞp0ðyÞ�� þ p

0

yðyÞ: ð32Þ
Consistent with (31), we look for solutions of our field equations (7)–(9*), 12 and 12� that are quadratic

in x. To this end we introduce the notation
f ðx; yÞ ¼ f
0

ðyÞ þ xf
1

ðyÞ þ x2f
2

ðyÞ: ð33Þ
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Anticipating the order of magnitude of certain terms, we introduce the following representations for the

stress resultants and bending strains:
Nx ¼ N
0

xðy; eÞ � x½G�
0

ðy; eÞ þ p
0

xðyÞ� þ ðx2=2Þ½q0ðyÞ þ eG
1

ðy; eÞ�� ð34Þ

G ¼ G
0

ðy; eÞ � xq
0ðyÞ � exG

1

ðy; eÞ ð35Þ

Ny ¼ qðyÞp0ðyÞ þ e½N
0

yðy; eÞ þ xN
1

yðy; eÞ þ x2N
2

yðy; eÞ� ð36Þ

Ky ¼ K
0

yðy; eÞ þ xH �
0

ðy; eÞ � eðx2=2ÞH�
1

ðy; eÞ ð34�Þ

H ¼ H
0

ðy; eÞ � exH
1

ðy; eÞ ð35�Þ

Kx ¼ e½K
0

xðy; eÞ þ xK
1

xðy; eÞ þ x2K
2

xðy; eÞ�; ð36�Þ
where N
0

x, G
0

, H
0

, G
1

, N
0

y , N
1

y , N
2

y , K
0

y , H
1

, K
0

x, K
1

x, and K
2

x are new unknowns that depend only on the

dimensionless circumferential coordinate y. These expressions satisfy (7) and (7�) identically. From (24) and

(25), we see that all terms quadratic in x come from the force term k� P.

Turning to (8) and (9) and inserting (35) and (36), we obtain, on equating coefficients of x2,
N�
y

2

þ jM�
y

2

¼ 0 ð8Þ2

�M��
y

2

þ jN
2

y ¼ 0: ð9Þ2

Eliminating N

2

y by differentiation, we see that M�
y

2

must satisfy the second-order differential equation
MðM�
y

2

Þ ¼ 0 ð37Þ
where M is the differential operator defined by (29). Since (5) and (17) imply that
t� ¼ jðyÞnðyÞ and n� ¼ �jðyÞtðyÞ; ð38Þ

it may be verified that the general homogeneous solution of (37) is
M
2

y ¼ a
2 þ a

2 � rðyÞ; ð39Þ
where a
2
and a

2
are, respectively, an unknown constant scalar and vector. (Here and henceforth, we adopt the

convention that any constants that depend, ultimately, on the surface loads only, are denoted by Greek

letters.) Substituting (39) back into ((9)2) and canceling a common factor of j, we obtain
N
2

y ¼ a
2 � nðyÞ: ð40Þ
Next, again using (35) and (36), we equate coefficients of x1 in (8) and (9) to obtain
N�
y

1

þ jð4M
2

þM�
y

1

Þ ¼ 0 ð8Þ1

�ð4M
2

þM�
y

1

Þ� þ jN
1

y ¼ 0: ð9Þ1
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Eliminating N
1

y by differentiation, we obtain an equation of the same form as (37), whose general solution

is
4M
2

þM�
1

y ¼ a
1 � tðyÞ; ð41Þ
where a
1
is an unknown constant vector.

Substituting (41) back into ((9)1) and canceling a common factor of j, we have
N
1

y ¼ a
1 � nðyÞ: ð42Þ
Finally, we equate the coefficients of x0 obtained by substituting (35) and (36) into (8) and (9). This gives
�G
1

þN�
y

0

þ jð2M
1

þM�
y

0

Þ ¼ 0 ð8Þ0

�½2M
2

x þ ð2M
1

þM�
y

0

Þ�� þ jNy

0

¼ 0: ð9Þ0

From this last equation,
N
0

y ¼ q½2M
2

x þ ð2M
1

þM�
y

0

Þ�� ð43Þ
and substitution of this expression into (8)0 yields
G
1

¼ 2ðqM
2

xÞ� þMð2M
1

þM�
y

0

Þ: ð44Þ
By the static-geometric duality, the analogous kinematic solutions and relations for (8�) and (9�) are
�E
2

x ¼ a�
2

þ a�
2

� rðyÞ ð39�Þ

K
2

x ¼ a�
2

� nðyÞ ð40�Þ

4E
2

� E�
x

1

¼ a�
1

� tðyÞ ð41�Þ

K
1

x ¼ a�
1

� nðyÞ ð42�Þ

K
0

x ¼ q½�2E
2

y þ ð2E
1

� E�
x

0

Þ��; ð43�Þ

�H
1

¼ �2ðqE
2

yÞ� þMð2E
1

� E�
x

0

Þ ð44�Þ
where a�
2

, a�
2

, etc., are constant scalars and vectors.

Note that we have satisfied exactly both the equilibrium and compatibility conditions without intro-

ducing stress–strain relations. We now introduce the latter to infer consistent forms for G
0

, H
0

, and the

external loads p
0

x and q
0
. With these in hand, we can return to the beam equations to determine all the

remaining unknowns, which, at this point, are N
0

x, G
0

, K
0

y , H
0

, N
0

y , K
0

x, and the constants a
2
, a�

2

, a
2
, a�

2

, a
1
, and

a�
1

.

First, inserting (16), (34), (34�), (36) and (36�) into the expression for M
2

y coming from (12�), we find that

(39) takes the form
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ð1=2ÞC�
2222q

�
0

þ OðeÞ ¼ a
2 þ a

2 � rðyÞ: ð45Þ

To simplify the formulas to follow, we now take the center of S to coincide with its centroid, which

means that we take
Z 2p

0

rðyÞdy ¼ 0: ð46Þ
Furthermore, because the stress–strain relations of any first-approximation shell theory contain unavoid-

able relative errors of OðeÞ, as shown by Koiter (1959), we take advantage of this by subtracting from the

relation for M
2

y those OðeÞ-terms that appear in (45). In general, such a minor modification yields new

stress–strain relations which are not derivable exactly from a strain–energy density. However, Simmonds

(1971) and Koiter and Cl�ement (1979) have shown that such modifications lead to relative mean square

errors of only OðeÞ and we shall make them whenever they lead to simplified formulas. This observation

leads to the general (and useful) conclusion that, in first-approximation shell theory, corrections of relative

order e are meaningful for stress resultants and bending strains, but not for stress couples and extensional
strains.

If we now integrate both sides of (45) from 0 to 2p, (46) implies that a
2 ¼ 0. This, in turn, means that q

0
,

which, by hypothesis, is independent of x and e, must be of the form
q
0 ¼ a� a � sðyÞ; ð47Þ
where a and a are, respectively, new unknown constants and
s �
Z y

0

rðgÞdgþ ð1=2pÞ
Z 2p

0

yrðyÞdy: ð48Þ
[If the elastic coefficients are allowed to depend on y, as in Reissner and Tsai (1972), then q
0
still has the same

form as (47), but the function sðyÞ becomes more complicated since it now depends on C�
2222ðyÞ.] By (46),

sð2pÞ ¼ sð0Þ. Furthermore, the last (constant) term in (48) has been chosen so that
Z 2p

0

sðyÞdy ¼
Z 2p

0

Z y

0

rðgÞdgþ
Z 2p

0

yrðyÞdy ¼ 2p
Z 2p

0

rðyÞdy ¼ 0 ð49Þ
[If S is a circle, s ¼ �ehðhÞ.] Henceforth, we regard q
0
as known––see (60)2 and (64)1––so that (45) yields

a
2 ¼ �ð1=2ÞC�

2222a. Note from (12), (34)–(36*), and (39*) that the static–geometric dual of (45) is
�ð1=2ÞA2222q�
0

¼ a�
2

� rðyÞa�
2

¼ 0; ð45�Þ

where, in analogy with what we did to simplify (45), we have added certain OðeÞ-terms to the stress–strain

relation for Ex

2

. Thus, even if bending and stretching are uncoupled in the stress–strain relations ðCabkl ¼ 0Þ,
q
0
must have the form (47) to satisfy (45�), which yields a�

2

¼ ð1=2ÞA2222a. Note also that the static-geometric

duality does not extend to load terms so that, for example, �A2222 in (45�) is not the dual of C�
2222 in (45).

At this point we note that the nominal Young�s modulus, E, introduced as a non-dimensionalizing factor

at the beginning of Section 3, may always be chosen so that A2222 ¼ 1 which we shall do henceforth. That is,

we now choose E to be the longitudinal Young�s modulus.
Next, we insert (12*) and (34)–(36*), into (41) and modify the stress–strain relation for M

2

and M
1

y by

adding certain OðeÞ-terms. Integrating once, we obtain
A�
2222H

�
0

� C�
2222ðG�

0

þ p
0

xÞ þ 4C
�
1222q

0 ¼ a
1 þ a

1 � rðyÞ; ð50Þ
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where 2C
�
1222 � C�

1222 þ C�
2212 and a

1
is an unknown constant. From 12, (34)–(36*) and (41*), the static-

geometric dual of this equation is
2 T
3 If
G�
0

þ p
0

x þ C2222H �
0

� 4A1222q
0 ¼ a�

1

þ a�
1

� rðyÞ; ð50�Þ
where the symmetry A1222 ¼ A2212 has been used. As shall see, many of the subsequent formulas simplify

considerably if the underlined terms in (50) and (50�) are absent. We call this extended orthotropy and note

that such a simplification was introduced at a certain stage by Ladev�eze and Simmonds (1998) in their

treatment of arbitrary prismatic beams. However, here we prefer to retain these coupling terms as far as
practical to explore the implications of full anisotropy.

Because (50) and (50�) must hold for all possible values of the elastic constants (consistent with a po-

sitive-definite strain–energy density), because p
0

x, q
0
, and G�

0

may be prescribed independently (as we shall

see), and because
R 2p
0
ðG
0

;H
0

Þ� dy ¼ ð0; 0Þ, the quantities p
0

x, G
�

0

, and H �
0

must have the forms
p
0

x ¼ bþ b � rðyÞ; ð51Þ

G�
0

¼ �b � rðyÞ þ c � sðyÞ; ð52Þ2

H �
0

¼ �k� � rðyÞ þ c� � sðyÞ; ð52�Þ
where b; b; . . . ; c� are unknown constant scalars and vectors. We satisfy (50) and (50�) by taking
fc; c�g ¼ � 4fA1222A�
2222 þ C2222C

�
1222;A1222C�

2222 � C
�
1222g

A�
2222 þ C2222C�

2222

a � fC;C�ga ð53Þ
and expressing a
1
, a�

1

, a
1
, and a�

1

in terms of b, b� b, and b�. Note that if bending and stretching are

uncoupled in the stress–strain relations, c ¼ �4A1222a and c� ¼ 0.

Integrating (52) and (52�), using (48), and defining
v ¼
Z y

0

sðgÞdgþ ð1=2pÞ
Z 2p

0

ysðyÞdy; ð54Þ3
so that
vð2pÞ ¼ vð0Þ and

Z 2p

0

vðyÞdy ¼ 0; ð55Þ
we have
G
0

¼ b� b � sðyÞ þ c � vðyÞ ð56Þ
and
H
0

¼ k� � k� � sðyÞ þ c� � vðyÞ; ð56�Þ

where the constant terms coming from (48) and (54) have been absorbed into the unknown constants

b and k�.
he term cÆs could be partitioned between (51) and (52). However, we prefer to keep the expression for p
0

x as simple as possible.

S is a circle, v ¼ �erðhÞ.
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6. Determination of the constants in the beamlike solutions

For what follows, it is useful to note by (17)1 that
Z 2p

0

tðyÞdy ¼ 0: ð57Þ
Inserting (47) and (51) into (31) and the resulting expression into (21), we have, by (46), (49) and (57),
P ¼ pð2bkþ a � IÞ ð58Þ

where
IðyÞ � �ð1=pÞ
Z y

0

sðgÞtðgÞdg ¼ ð1=pÞ
Z y

0

rðgÞrðgÞdg ¼ ITðyÞ; I ¼ Ið2pÞ; ð59Þ
is a two dimensional, second-order tensor in the plane of S. [Here, we have denoted the dyadic product of

two vectors a and b by ab. Further, for later use, we have defined a variable tensor, IðyÞ, even though we

need its value only at y ¼ 2p in (58). Note that ifS is a circle, I ¼ 1, where 1 is the two-dimensional identity

tensor.] Thus,
b ¼ ð1=2pÞP � k and a ¼ ð1=pÞP � I�1: ð60Þ

Turning to (23) and noting (31), (46), (47), (51) and (59), we have
L ¼ ð2aAþ pa �mÞkþ pb � I� k: ð61Þ

By the divergence theorem,
AðyÞ ¼ ð1=2Þk �
Z y

0

rðgÞ � tðgÞdg ¼ �ð1=2Þ
Z y

0

rðgÞ � nðgÞdg; A ¼ Að2pÞ; ð62Þ
is the area swept out by the vector rðgÞ as g goes from 0 to y and
mðyÞ � ð1=pÞ
Z y

0

sðgÞrðgÞ � nðgÞdg; m ¼ mð2pÞ: ð63Þ
(If S is a circle, A ¼ B ¼ p and m ¼ 0.) Thus, with the use of (60)2,
a ¼ ð1=2AÞðL � k� P � I�1 �mÞ and b ¼ ð1=pÞI�1 � ðk� LÞ: ð64Þ

[In terms of the given surface loads, a ¼

R 2p
0

p
0

yðyÞdy and b ¼ ðl=pÞI�1
R 2p
0

p
0

xðyÞrðyÞdy.]

Note that the (given) distributed beam loads P and L determine p
0

x and q
0
, but not p

0
. Hence, as part of our

definition of a beamlike solution, we simply set p
0 ¼ 0.

Next, setting x ¼ 0 in (15), (20), (34) and (35), we have
Tð0Þ ¼
Z 2p

0

½N
0

xðy; eÞkþ G
0

ðy; eÞtðyÞ � eM
1

xðy; eÞnðyÞ�dy: ð65Þ
So far, we have put no restrictions on the form of N
0

x or its static-geometric dual, K
0

y . However, it proves to

be sufficient (and may be taken as part of the definition of a beamlike solution) to take
N
0

x ¼ d þ d � rðyÞ; K
0

y ¼ d� � rðyÞ; ð66; 66�Þ
where d, d, and d� are unknown constants; d� ¼ 0 because
R 2p
0

Ky dy ¼ 0. [Reissner and Tsai (1972) make an

assumption similar to (66) and (66�).] By (12*), (34)–(36), (46), (47), (51)–(52*), (56), (56)*, (57), (59), (62),
(66) and (66�),
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Tð0Þ ¼ 2pdkþ pb � Iþ Bc� k� e 2A½A�
1122k

�
n

þ C�
1122ðb� bÞ� þ pðA�

1122c
� � 2C�

1112a� C�
1122cÞ � I� k

o
ð67Þ
where
BðyÞ ¼ ð1=2Þk �
Z y

0

sðgÞ � rðgÞdg; B ¼ Bð2pÞ; ð68Þ
is the area swept out by sðgÞ as g goes from 0 to y.
Finally, from (15) and (22),
Mð0Þ ¼
Z 2p

0

frðyÞ � ½N
0

xðy; eÞkþ G
0

ðy; eÞtðyÞ� þ e½2M
0

ðy; eÞk�M
0

xðy; eÞtðyÞ �M
1

xðy; eÞrðyÞ � nðyÞ�gdy

ð69Þ

or, by of the same equations that led to (67),
Mð0Þ ¼ ½2Abþ pðb �m� c � qÞ�k� pd � I� kþ ef4pðC�
1222d � 2C�

1212bÞ þ ðA�
1122c

� � 2C�
1122a� C�

1122cÞ � nr

� ½A�
1122kþ C�

1122ðb� bÞ� � ntgkþ e½2C�
1212ðpb � I� Bc� kÞ � 2A�

1222ðpk
� � I� Bc� � kÞ

� AC�
1122d� k�; ð70Þ
where
qðyÞ � ð1=pÞ
Z y

0

vðgÞrðgÞ � nðgÞdg; q ¼ qð2pÞ ð71Þ
and
nfr;tg � ð1=2Þ
Z 2p

0

r2ðgÞfrðgÞ; tðgÞgdðgÞ: ð72Þ
(For a circle, q ¼ nr ¼ nt ¼ 0.)

Remarks

(1) Only seven of the 20 independent elastic constants––recall that we have set A2222 ¼ 1––appear in the

expressions for Tð0Þ and Mð0Þ, and then only in the terms that are OðeÞ.
(2) From (67),
d

2A

pd
¼ ð1=2pÞk � Tð0Þ; ð73Þ

which depends on the axial component of Tð0Þ only, whereas b, b, and d involve the elastic constants

and the external loads. The expressions for these latter constants simplify considerably if the external

loads vanish or for extended orthotropy (all underlined terms vanish). Thus, b and d are given by
b ¼ k �Mð0Þ �m � I�1 � Tð0Þ þ ½pq� Bm � ðI�1 � kÞ� � cþOðeÞ ð74Þ
and
¼ ðI�1 � kÞ �Mð0Þ þ k�OðeÞ; ð75Þ
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By the static-geometric duality,
2A

pd

4 The ‘

Since

¼ qðp0
tion is
5 The f
k� ¼ ðpq� Bm � I�1 � kÞ � c� þ OðeÞ; k� ¼ ðB=pÞðI�1 � kÞ � c� þ k�OðeÞ; ð76Þ

and
� ¼ k�OðeÞ: ð77Þ

(3) If there are no surface loads and if the three coupling coefficients C�

1122 C
�
1222 and C�

1212 vanish, then the

OðeÞ and OðeÞ terms in (74) and (75) vanish whereas k� ¼ 0 and k� ¼ d� ¼ 0.

With all the constants in the beamlike solutions now known in terms of Tð0Þ, Mð0Þ, P, and L, we can

draw several important conclusions concerning the inextensional part of the displacement, as reflected in

the expression (56�) for H
0

.

(1) For a circular cross section, H
0

¼ 0; 4

(2) To within a relative error of OðeÞ, H
0

depends on the transverse components of P only, as (53), (60)2, and

(76) show.

(3) These same equations together with (28)2;3 show that, unless A1222C�
2222 ¼ C1222, in which case H

0

¼ OðeÞ,
the presence of surface loads induces a (relatively large), non-rigid-body, inextensional bending displacement.

To obtain the (dimensionless) beamlike displacement Uþ eu, we first compute U ¼ U � k by setting e ¼ 0

in (28)2 and using variation of parameters to conclude that
MðU �Þ ¼ �H
0

ðy; 0Þ ) U � ¼ tðyÞ � C1

�
�
Z y

0

nðgÞH
0

ðg; 0Þdg
�
; ð78Þ
where C1 is an unknown constant vector. We next compute H
0

by inserting (76) into (56�) and noting (59),
(62), (63), (68) and (72). Setting t ¼ r� and integrating by parts, we find that
U ¼ C1 þ C1 � rðyÞ � rðyÞ �
Z y

0

nðgÞH
0

ðg; 0Þdgþ
Z y

0

rðgÞ � nðgÞH
0

ðg; 0Þdg

¼ C1 þ C1 � rðyÞ þ fðp=AÞ½AqðyÞ � AðyÞq� þ ðB=AÞ½AðyÞm� AmðyÞ� � ðI�1 � kÞ
þ rðyÞ � ½ð1=2Þk� sðyÞsðyÞ � BðyÞ1� Bk� IðyÞ � I�1 � k�g � c�; ð79Þ
where C1 þ C1 � r is a rigid-body term. 5 As there are no dislocations, Uð2pÞ ¼ Uð0Þ. Further, because
d� ¼ k�OðeÞ, it follows that K

0

y ¼ OðeÞ, which, by (28)3, implies that
V ¼ C2rðyÞ � nðyÞ þ C2 � tðyÞ ð80Þ

a rigid-body term. [Recall from (26) that the tangential component of inextensional displacement is
V � xU �.]

We may compute u, to within a relative error of OðeÞ, by using the strain–stress relations (12) and the

strain–displacement relations (27). These calculations are straightforward but tedious in their full generality

so we omit them here. However, see (89), (90), (93) and (94) where a restricted form of these relations must

be used to compute overall beamlike stress–strain relations.
‘singular’’ nature of a circular cross section is not surprising if we consider an infinite tube under a constant internal pressure

all unknowns in this case are independent of the axial coordinate, (8) and (9) reduce to N�
y þ ejM�

y ¼ 0 and

þ eM��
y Þ. Eliminating Ny we obtain eMðM�

y Þ þ q�p0 ¼ 0. This equation shows that, unless q� ¼ 0, i.e., unless the cross

circular, we must take p0 ¼ OðeÞ. In other words, a circular tube is imperfection sensitive, even when buckling is not an issue.

ull dimensionless rigid-body displacement has the form URB ¼ Dþ R� ½xkþ rðyÞ�, where D and R are constant vectors.
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7. Beamlike displacements, rotations, and strains

Let D and W denote, respectively, a beamlike virtual displacement and rotation. Taking the dot product

of (18) with D, the dot product of (19) with W, and integrating over the length of the shell and by parts to
remove derivatives on the force T and moment M, we arrive at the identity
ðT � DþM �WÞl0 þ
Z l

0

ðP � Dþ L �WÞdx �
Z l

0

½T � ðD0 þ k�W0Þ þM �W0�dx ð81Þ
The form of the right side of this equation suggests that the virtual extensional and bending strains

associated with T and M are
C � e�1ðD0 þ k�WÞ ð82Þ
and
X � e�1W0 ð83Þ
But if we introduce the actual (dimensionless) displacement Uþ eu, how to define D and W? The key lies in

the term P � Dþ L �W, although one�s first impulse is to look to the first term on the left of (81) as this is the

only external work term if there are no surface loads.

In the Sanders–Koiter theory, twice the work done by the surface loads follows from (26) and (31) as
2W ¼
Z l

0

Z 2p

0

p � ðUþ euÞdy dx ¼
Z l

0

Z 2p

0

½p0 xðU þ euÞ þ p
0

yðV � xU � þ emÞ�dy dx: ð84Þ
(Recall that we have set p
0 ¼ 0.) By (32), (47) and (51),
2W ¼
Z l

0

Z 2p

0

½ðbþ b � rÞðU þ euÞ þ ða� a � sÞðV � xU � þ emÞ�dy dx: ð85Þ
Further, using (60) and (64) to express (b, b, a and a in terms of P and L, we obtain
2W ¼
Z l

0

P �
Z 2p

0

ð1=2pÞðU
�

þ euÞk� ðV � xU � þ emÞðs=pþm=2AÞ � I�1�dy

þ L �
Z 2p

0

½ð1=2AÞðV � xU � þ emÞkþ ð1=pÞðU þ euÞr � I�1 � k�dy
�
dx: ð86Þ
Equating the integrand on the right side of this equation to P � Dþ L �W and setting �
R 2p
0

U �sdy ¼R 2p
0

Urdy, we arrive at the definitions
D �
Z 2p

0

fð1=2pÞUk� ½V ðs=pþm=2AÞ þ xUr=p���1gdy þ e
Z 2p

0

½ð1=2pÞuk� mðs=pþm=2AÞ � I�1�dy

� W
0

þ xW
1

þ ewðx; eÞ ð87Þ
and
W �
Z 2p

0

½ð1=2AÞV kþ ð1=pÞUr � I�1 � k�dy þ e
Z 2p

0

½ð1=2AÞmkþ ð1=pÞur � I�1 � k�dy

� U
0

þ e/ðx; eÞ ð88Þ
where W
0

, W
1

, and U
0

are unknown constants. Note that the definitions of D and W are strictly kinematic,

depending on neither material properties nor loads. [We should also point out that D and W do not corre-
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spond to what Ladev�eze and Simmonds (1998) call generalized displacements, although both represent

measures of overall, beamlike displacements and rotations.]

Expressions for the beamlike strains follow from (27), (82), (83), (87) and (88), and the relations,R 2p
0

u�sdy ¼ �
R 2p
0

urdy and
R 2p
0

u� dy ¼ 0 as
C ¼
Z 2p

0

½ð1=2pÞExk� 2Eðs=pþm=2AÞ � I�1�dy ð89Þ
and
X ¼
Z 2p

0

½ð1=AÞEkþ ð1=pÞExr � I�1 � k�dy ð90Þ
To further reduce the work identity (81), note that it must hold, in particular, if e ¼ 0, in which case, by

(82), (83), (87) and (88),
½T � ðW
0

þ xW
1

Þ þM �U
0

�l0 þ lfP � ½W
0

þ ð1=2ÞlW
1

� þ L �U
0

g ¼ 0: ð91Þ

That is, the external work done in any beamlike inextensional deformation vanishes. But this is obvious

physically because, in the last lines of (87) and (88), the terms W
0

þ xW
1

¼ W
0

þ xU
0

� k and U
0

are merely

beamlike rigid-body displacements.

It now follows from (82), (83), (87) and (88) that (81) reduces to
ðT � wþM � /Þl0 þ
Z l

0

ðP � wþ L � /Þdx �
Z l

0

ðT � CþM �XÞdx ð92Þ
Our final task in this section is to obtain stress–strain relations for the beamlike solutions. Noting that

taking p
0 ¼ 0 and d� ¼ e� ¼ 0 implies that N

0

y and K
0

y are OðeÞ and neglecting terms of relative OðeÞ, we
have, from (10), (12), (16), (34)–(36*), (89) and (90),
C ¼
Z 2p

0

½ð1=2pÞð�2A2212Gþ Nx � 2C2212HÞkþ 2ð�2A1212Gþ A1222Nx � 2C1212HÞðs=pþm=2AÞ � I�1�dy

ð93Þ

X ¼
Z 2p

0

½ð1=AÞ2A1212G� A1222Nx þ C1212HÞkþ ð1=pÞð�2A2212Gþ Nx � 2C2212HÞk� I�1 � r�dy ð94Þ
For simplicity, we now assume that A1211 ¼ A1222 ¼ C
�
1222 ¼ C�

1222 ¼ 0, i.e., we drop all underlined terms.

(Recall that we have called these conditions extended orthotropy.)

Then, with the neglect of further terms of OðeÞ, (93) and (94) reduce to
C ¼
Z 2p

0

½ð1=2pÞNxk� 4A1212Gðs=pþm=2AÞ � I�1�dy ð95Þ
and
X ¼
Z 2p

0

½ð2=AÞA1212Gkþ ð1=pÞNxr � I�1 � k�dy ð96Þ
Two of the integrals in (95) and (96) follow directly from (15), (20) and (22), namely,
Z 2p

0

Nxðx; y; eÞdy ¼ k � TðxÞ ð97Þ
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and
 Z 2p

0

Nxðx; y; 0ÞrðyÞdy ¼ k�MðxÞ: ð98Þ
For the others involving G, we first use (35), (49) and (56). Because the underlined term in (56) vanishes, we

find that
Z 2p

0

Gðs=pþm=2AÞdy ¼ �b � Jþ ðp=AÞbmþ x½a � J� ðp=AÞam� ð99Þ
and
 Z 2p

0

Gdy ¼ 2pðb� xaÞ; ð100Þ
where
JðyÞ ¼ ð1=pÞ
Z y

0

sðgÞsðgÞdg ¼ JTðyÞ; J ¼ Jð2pÞ: ð101Þ
(For a circle, J ¼ 1.)

Next, we use (60)2, (64)1, (69)2, and (73)––with the underlined terms neglected––to express a, a, b, and b
in terms of P, L, Tð0Þ, and Mð0Þ. Noting that (24), (25) and (31) imply that, for external loads constant
along the axis of the tube,
T ¼ Tð0Þ � xP ð102Þ

and
M ¼ Mð0Þ � x½k� Tð0Þ þ L� þ ðx2=2Þk� P; ð103Þ

we find altogether that (95) and (96) take the form
C ¼ w0 þ k� / ¼ KT � Tþ K �M ð104Þ

and
X ¼ /0 ¼ KT � Tþ KM �M; ð105Þ

where
KT ¼ ð1=2pÞkkþ 4A1212I
�1 � ½ð1=pÞJþ ðp=2A2Þmm� � I�1 ð106Þ

K ¼ �ð2p=A2ÞA1212I
�1 �mk ð107Þ

KM ¼ ð2p=A2ÞA1212kk� ð1=pÞðk� I�1 � kÞ ð108Þ

the superscript ‘‘T’’ denoting ‘‘transpose’’. For a circle,
KT ¼ ð1=2pÞkkþ ð4=pÞA12121;K ¼ 0;KM ¼ ð1=pÞð2A1212kkþ 1Þ ð109Þ

Further, if the tube is isotropic, 2A1212 ¼ 1þ m, where m is Poisson�s ratio, so that KT ¼ ð1=2pÞ½kkþ
4ð1þ mÞ1� and KM ¼ ð1=pÞ½ð1þ mÞkkþ 1�. These expressions agree with the analytical expressions from

three-dimensional elasticity given in equation (4.29) of Sanchez (2001) for a tube of inner radius a and outer

radius b in the limit as a ! b.
The beamlike stress–strain relations (104) and (105) have the same form as in equation (6) of Ladev�eze

and Simmonds (1998), except that, as mentioned earlier, here the beamlike displacements and rotations––
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and hence the strains––are different and there is no explicit dependence on the distributed external loads.

[However, such load terms do appear if the underlined terms in (93) and (94) are not zero.]

The solution of the beamlike equations is now straightforward: with T and M given explicitly by (102)

and (103), we first integrate (105) to obtain / and then (104) to obtain w. If we suppress rigid-body terms,
then the boundary conditions at x ¼ 0, l, be they kinetic, kinematic, or a mixture, determine the unknowns

Tð0Þ and Mð0Þ.
8. Example: an orthotropic elliptical tube

Let fi; j; kg denote the standard set of orthonormal base vectors in a fixed Cartesian reference frame and

let
Rr ¼ a cos/iþ b sin/j; 06/ < 2p; ð110Þ
where pR=2a ¼ Eð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2=a2

p
Þ, the complete elliptic integral of the second kind. The dimensionless dis-

tance y around the tube is related to / by the initial value problem
y0ð/Þ ¼ ða=RÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 /þ ðb=aÞ2 cos2 /

q
� sð/; b=aÞ ¼

X1
0

sn cos 2n/; 0 < /6 2p; yð0Þ ¼ 0 ð111Þ
By either using (111) or appealing to symmetry arguments, we conclude that for an elliptic cross section,
m ¼ 0; I ¼ I11iiþ I22jj; J ¼ J11iiþ J22jj ð112Þ
Although it is possible to express the components of I and J in terms of the Fourier coefficients sn in (111), it

is much simpler to compute them numerically, using standard routines for integrating first-order differential

equations with initial conditions. This may be done in two steps.

First, we need to compute sð0Þ ¼ ðl=2pÞ
R 2p
0

yrdy � c2ð2pÞj, where, by (46) and symmetry, i � sð0Þ ¼ 0.

Then using (48), (110) and (111) and with ð Þ0 ¼ dð Þ=d/, we solve numerically
X 0 � y
c2

� �0
¼ sð/; b=aÞ 1

ð1=2pÞðb=RÞy sin/

� �
; 0 < /6 2p; ð113Þ
subject to the initial condition X ð0Þ ¼ 0. Next, noting (48), (59) and (101), and with
s ¼ s1ð/Þiþ s2ð/Þj; ð114Þ
we solve
Y 0 �

I11
I22
J11
J22
s1
s2

2
6666664

3
7777775 ¼ sð/; b=aÞ

ð1=pÞða=RÞ2 cos2 /
ð1=pÞðb=RÞ2 sin2 /

ð1=pÞs21ð/Þ
ð1=pÞs22ð/Þ
ða=RÞ cos/
ðb=RÞ sin/

2
6666664

3
7777775; 0 < p6 2p; ð115Þ
subject to the initial condition Y ð0Þ ¼ ½0; 0; 0; 0; 0; c2ð2pÞ�T, the last component of Y ð0Þ coming from the

solution of (113) evaluated at / ¼ 2p. This yields
fI; Jg ¼ fI11; J11giiþ fI11; J22gjj at / ¼ 2p ð116Þ
which allows us to compute the tensor coefficients KT and KM which appear in the beamlike strain–stress

relations (104) and (105).



Fig. 1. Non-zero components of the tensor I � Ið2pÞ defined in (59) for elliptical cross sections with various ratios of semi-minor to

semi-major axes (b=a).

Fig. 2. Non-zero components of the tensor J � Ið2pÞ defined in (101) for eliptical cross sections with various ratios of semi-minor to

semi-major axes (b=a).
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We have solved these equations for b=a 2 ½0; 1�. The resulting values for the components of I and J are

displayed in Figs. 1 and 2. For a circle ðb=a ¼ 1Þ, I11 ¼ I22 ¼ J11 ¼ J22 ¼ 1; for a flattened ellipse ðb=a ¼ 0Þ,
I11 ¼ p2=6, I22 ¼ 0, J11 ¼ p4=60, J22 ¼ 0. Values for the components of KT and KM follow readily from (106)

and (108), where the area of the cross section S is given by A ¼ ðb=aÞp3=4E2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2=a2

p
Þ. Even for rel-

atively thick tubes ðh=b ¼ 0:1Þ, these values for the components of KT and KM are virtually indistin-

guishable from those Sanchez (2001) computed––necessarily more expensively––from three-dimensional

elasticity.
Appendix A

Herein, we show that, to within a relative error of OðeÞ, the effective edge stress resultant Nx, defined in
(15), can be cast into a form analogous to the Saint–Venant normal traction, rsvN jsx given by equation (7)

of Ladev�eze and Simmonds (1998).

Starting from (15) and using, successively, (35), (47), (56), (60)2, (64)1, (67), (69), (73), (74), (97), (102),

and (103), we find that
Nx ¼ A
0

ðy; eÞ � TðxÞ þ B
0

ðy; eÞ �MðxÞ þ ð1=pÞC½I�1 � gðyÞ � P�tðyÞ þOðeÞ; ðA:1Þ
where
A
0

ðy; 0Þ ¼ ð1=2pÞkk� tðyÞ½ð1=2AÞmþ ð1=pÞsðyÞ� � I�1 ðA:2Þ
B
0

ðy; 0Þ ¼ ð1=2AÞtðyÞkþ ð1=pÞkrðyÞ � ðI�1 � kÞ ðA:3Þ
g ¼ ðp=2AÞq� B½ð1=2AÞmþ ð1=pÞsðyÞ� � I�1 � kþ vðyÞ; ðA:4Þ
C is a material constant given by (53), and v(y) is a known function given by (54). Note that, to OðeÞ,
material properties enter (A.1) only through the scalar factor C (which vanishes for extended orthotropy, as

we have noted earlier).
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